Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
J Phys Chem B ; 128(9): 2124-2133, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38391238

G-protein-coupled receptors (GPCRs) are structurally flexible membrane proteins that mediate a host of physiological responses to extracellular ligands like hormones and neurotransmitters. Fine features of their dynamic structural behavior are hypothesized to encode the functional plasticity seen in GPCR activity, where ligands with different efficacies can direct the same receptor toward different signaling phenotypes. Although the number of GPCR crystal structures is increasing, the receptors are characterized by complex and poorly understood conformational landscapes. Therefore, we employed a fluorescence microscopy assay to monitor conformational dynamics of single ß2 adrenergic receptors (ß2ARs). To increase the biological relevance of our findings, we decided not to reconstitute the receptor in detergent micelles but rather lipid membranes as proteoliposomes. The conformational dynamics were monitored by changes in the intensity of an environmentally sensitive boron-dipyrromethene (BODIPY 493/503) fluorophore conjugated to an endogenous cysteine (located at the cytoplasmic end of the sixth transmembrane helix of the receptor). Using total internal reflection fluorescence microscopy (TIRFM) and a single small unilamellar liposome assay that we previously developed, we followed the real-time dynamic properties of hundreds of single ß2ARs reconstituted in a native-like environment─lipid membranes. Our results showed that ß2AR-BODIPY fluctuates between several states of different intensity on a time scale of seconds, compared to BODIPY-lipid conjugates that show almost entirely stable fluorescence emission in the absence and presence of the full agonist BI-167107. Agonist stimulation changes the ß2AR dynamics, increasing the population of states with higher intensities and prolonging their durations, consistent with bulk experiments. The transition density plot demonstrates that ß2AR-BODIPY, in the absence of the full agonist, interconverts between states of low and moderate intensity, while the full agonist renders transitions between moderate and high-intensity states more probable. This redistribution is consistent with a mechanism of conformational selection and is a promising first step toward characterizing the conformational dynamics of GPCRs embedded in a lipid bilayer.


Boron Compounds , Lipids , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/chemistry , Molecular Conformation , Receptors, Adrenergic , Receptors, Adrenergic, beta-2/chemistry , Ligands
2.
Nat Chem Biol ; 20(2): 142-150, 2024 Feb.
Article En | MEDLINE | ID: mdl-37460675

G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm-1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape.


Receptors, G-Protein-Coupled , Signal Transduction , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Article En | MEDLINE | ID: mdl-37148218

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Cardiovascular Diseases , Cytomegalovirus Infections , Hypertension , Humans , Cytomegalovirus/metabolism , Signal Transduction , Cytomegalovirus Infections/epidemiology , Receptors, G-Protein-Coupled/metabolism
4.
Nature ; 611(7937): 827-834, 2022 11.
Article En | MEDLINE | ID: mdl-36418452

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Brain , Mammals , Vacuolar Proton-Translocating ATPases , Animals , Adenosine Triphosphate/metabolism , Brain/enzymology , Brain/metabolism , Mammals/metabolism , Protons , Synaptic Vesicles/enzymology , Synaptic Vesicles/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Neurotransmitter Agents/metabolism , Synaptic Transmission , Time Factors , Kinetics
5.
Sci Rep ; 12(1): 13486, 2022 08 05.
Article En | MEDLINE | ID: mdl-35931724

In the course of cancer progression tumor cells undergo morphological changes that lead to increased motility and invasiveness thus promoting formation of metastases. This process called epithelial to mesenchymal transition (EMT) is triggered by transforming growth factor (TGFß) but for gaining the full invasive potential an interplay between signaling of TGFß and Ras GTPases is required. Ras proteins possess a lipidated domain that mediates Ras association with the plasma membrane, which is essential for Ras biological functions. Type and number of the lipid anchors are the main difference among three Ras variants-H-ras, N-ras and K-ras. The lipid anchors determine membrane partitioning of lipidated proteins into membrane areas of specific physico-chemical properties and curvature. In this study, we investigated the effect of TGFß treatment on the subcellular localization of H-ras and K-ras. We show that TGFß increases positive plasma membrane curvature, which is subsequently sensed by H-ras, leading to its elevated plasma membrane localization and activation. This observation suggests the existence of a novel positive feedback loop whereby the increased level of plasma membrane curvature during TGFß induced EMT attracts more Ras molecules to the plasma membrane resulting in increased Ras activity which in turn promotes further EMT and thus ultimately enables the acquisition of full invasive potential.


Epithelial-Mesenchymal Transition , Transforming Growth Factor beta , Lipids , Oncogene Proteins/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factors/metabolism , ras Proteins/metabolism
6.
J Cell Biol ; 221(2)2022 02 07.
Article En | MEDLINE | ID: mdl-34964841

To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.


Cell Movement , Cell Polarity , Neutrophils/cytology , Neutrophils/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , Actin Cytoskeleton/metabolism , HEK293 Cells , HL-60 Cells , Humans , Substrate Specificity
7.
J Cell Biol ; 220(8)2021 08 02.
Article En | MEDLINE | ID: mdl-34096975

How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.


Cell Membrane/metabolism , Cell Shape , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cell Membrane/genetics , Cell Membrane/ultrastructure , Cell Movement , HEK293 Cells , HL-60 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/ultrastructure , Humans , Macrophages/metabolism , Macrophages/ultrastructure , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Transport , Pseudopodia/genetics , Pseudopodia/ultrastructure , Signal Transduction , Time Factors , Wiskott-Aldrich Syndrome Protein Family/genetics
8.
ACS Cent Sci ; 6(7): 1159-1168, 2020 Jul 22.
Article En | MEDLINE | ID: mdl-32724850

Biological membranes have distinct geometries that confer specific functions. However, the molecular mechanisms underlying the phenomenological geometry/function correlations remain elusive. We studied the effect of membrane geometry on the localization of membrane-bound proteins. Quantitative comparative experiments between the two most abundant cellular membrane geometries, spherical and cylindrical, revealed that geometry regulates the spatial segregation of proteins. The measured geometry-driven segregation reached 50-fold for membranes of the same mean curvature, demonstrating a crucial and hitherto unaccounted contribution by Gaussian curvature. Molecular-field theory calculations elucidated the underlying physical and molecular mechanisms. Our results reveal that distinct membrane geometries have specific physicochemical properties and thus establish a ubiquitous mechanistic foundation for unravelling the conserved correlations between biological function and membrane polymorphism.

9.
PLoS Comput Biol ; 15(12): e1007539, 2019 12.
Article En | MEDLINE | ID: mdl-31869334

The lumenal pH of an organelle is one of its defining characteristics and central to its biological function. Experiments have elucidated many of the key pH regulatory elements and how they vary from compartment-to-compartment, and continuum mathematical models have played an important role in understanding how these elements (proton pumps, counter-ion fluxes, membrane potential, buffering capacity, etc.) work together to achieve specific pH setpoints. While continuum models have proven successful in describing ion regulation at the cellular length scale, it is unknown if they are valid at the subcellular level where volumes are small, ion numbers may fluctuate wildly, and biochemical heterogeneity is large. Here, we create a discrete, stochastic (DS) model of vesicular acidification to answer this question. We used this simplified model to analyze pH measurements of isolated vesicles containing single proton pumps and compared these results to solutions from a continuum, ordinary differential equations (ODE)-based model. Both models predict similar parameter estimates for the mean proton pumping rate, membrane permeability, etc., but, as expected, the ODE model fails to report on the fluctuations in the system. The stochastic model predicts that pH fluctuations decrease during acidification, but noise analysis of single-vesicle data confirms our finding that the experimental noise is dominated by the fluorescent dye, and it reveals no insight into the true noise in the proton fluctuations. Finally, we again use the reduced DS model explore the acidification of large, lysosome-like vesicles to determine how stochastic elements, such as variations in proton-pump copy number and cycling between on and off states, impact the pH setpoint and fluctuations around this setpoint.


Models, Biological , Organelles/metabolism , Protons , Buffers , Computational Biology , Computer Simulation , Fluorescent Dyes , Hydrogen-Ion Concentration , Ion Transport , Membrane Potentials , Permeability , Proton Pumps/metabolism , Stochastic Processes
10.
Soft Matter ; 15(48): 9829-9839, 2019 Dec 11.
Article En | MEDLINE | ID: mdl-31728468

Membrane curvature has recently been recognized as an active regulator of cellular function, with several protein families identified as sensors and generators of membrane curvature. Amongst them, the inverse Bin/Amphiphysin/Rvs (I-BAR) domain family has been implicated in the sensing and generation of membrane structures with negative membrane curvature e.g. filopodia or dendritic spines. However, to date, quantitative biophysical investigations of I-BAR domains have mostly taken place in reconstitution. Here, we use fluorescence microscopy to quantitatively investigate membrane curvature sensing and generation by I-BARs in filopodia of living cells. As a model system, we selected two prototypic members of the I-BAR family, the insulin receptor substrate p53 and missing-in-metastasis. Our data demonstrated how I-BARs sense negative membrane curvature in the complex environment of live cells by revealing a dependence on membrane curvature for both their binding affinity to membranes and their saturation density. The non-monotonic dependence of protein sorting with negative membrane curvature allowed us to apply previously developed thermodynamic models to provide estimates of the effective intrinsic curvature and bending rigidity of the two I-BARs bound at the plasma membrane. Our results agree with studies performed on the insulin receptor substrate p53 in reconstitution. To quantitate membrane curvature generation by I-BARs we measured how their overexpression reduces the peak and the width of the size distribution of filopodia, resulting in filopodia populations with smaller and more uniform diameters. Our findings provide a quantitative biophysical insight in the ability of I-BARs to sense and generate negative membrane curvature in the crowded environment of living cells.


Adaptor Proteins, Signal Transducing/physiology , Cell Membrane/physiology , Microfilament Proteins/physiology , Models, Biological , Neoplasm Proteins/physiology , Nerve Tissue Proteins/physiology , Pseudopodia/physiology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , PC12 Cells , Protein Domains , Rats
11.
Biophys J ; 115(2): 300-312, 2018 07 17.
Article En | MEDLINE | ID: mdl-30021106

G-protein-coupled receptors (GPCRs) control vital cellular signaling pathways. GPCR oligomerization is proposed to increase signaling diversity. However, many reports have arrived at disparate conclusions regarding the existence, stability, and stoichiometry of GPCR oligomers, partly because of cellular complexity and ensemble averaging of intrareconstitution heterogeneities that complicate the interpretation of oligomerization data. To overcome these limitations, we exploited fluorescence-microscopy-based high-content analysis of single proteoliposomes. This allowed multidimensional quantification of intrinsic monomer-monomer interactions of three class A GPCRs (ß2-adrenergic receptor, cannabinoid receptor type 1, and opsin). Using a billion-fold less protein than conventional assays, we quantified oligomer stoichiometries, association constants, and the influence of two ligands and membrane curvature on oligomerization, revealing key similarities and differences for three GPCRs with decidedly different physiological functions. The assays introduced here will assist with the quantitative experimental observation of oligomerization for transmembrane proteins in general.


Protein Multimerization , Proteolipids/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Ligands , Protein Structure, Quaternary , Signal Transduction , Solubility
12.
Cell Rep ; 23(7): 2056-2069, 2018 05 15.
Article En | MEDLINE | ID: mdl-29768204

BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis.


Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Membrane/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cytoplasmic Granules/metabolism , Drosophila melanogaster/metabolism , Insulin/metabolism , Insulin Secretion , Liposomes , Protein Binding , Protein Domains , Protein Structure, Secondary , Structure-Activity Relationship
13.
J Phys D Appl Phys ; 51(34)2018 Aug.
Article En | MEDLINE | ID: mdl-30655651

The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.

14.
Biophys J ; 113(6): 1269-1279, 2017 Sep 19.
Article En | MEDLINE | ID: mdl-28738989

Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins.


Genes, ras , Liposomes/chemistry , Models, Molecular , Phosphatidylcholines/chemistry , Pressure , Protein Binding , Surface Properties
15.
Nat Chem Biol ; 13(7): 724-729, 2017 Jul.
Article En | MEDLINE | ID: mdl-28481347

The targeted spatial organization (sorting) of Gprotein-coupled receptors (GPCRs) is essential for their biological function and often takes place in highly curved membrane compartments such as filopodia, endocytic pits, trafficking vesicles or endosome tubules. However, the influence of geometrical membrane curvature on GPCR sorting remains unknown. Here we used fluorescence imaging to establish a quantitative correlation between membrane curvature and sorting of three prototypic class A GPCRs (the neuropeptide Y receptor Y2, the ß1 adrenergic receptor and the ß2 adrenergic receptor) in living cells. Fitting of a thermodynamic model to the data enabled us to quantify how sorting is mediated by an energetic drive to match receptor shape and membrane curvature. Curvature-dependent sorting was regulated by ligands in a specific manner. We anticipate that this curvature-dependent biomechanical coupling mechanism contributes to the sorting, trafficking and function of transmembrane proteins in general.


Cell Membrane/metabolism , Ligands , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Membrane/chemistry , Optical Imaging , PC12 Cells , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Thermodynamics
16.
Science ; 351(6280): 1469-73, 2016 Mar 25.
Article En | MEDLINE | ID: mdl-27013734

In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.


Arabidopsis Proteins/metabolism , Proton-Translocating ATPases/metabolism , Protons , Allosteric Regulation , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Hydrogen-Ion Concentration , Ion Transport , Membrane Potentials/drug effects , Membrane Potentials/physiology , Molecular Imaging , Protein Structure, Tertiary , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/chemistry , Valinomycin/pharmacology
17.
Nano Lett ; 16(4): 2890-5, 2016 Apr 13.
Article En | MEDLINE | ID: mdl-27013033

Activation of small GTPases of the Ras superfamily by guanine nucleotide exchange factors (GEFs) is a key step in numerous cell signaling processes. Unveiling the detailed molecular mechanisms of GEF-GTPase signaling interactions is of great importance due to their central roles in cell biology, including critical disease states, and their potential as therapeutic targets. Here we present an assay to monitor individual Ras activation events catalyzed by single molecules of the GEF Son of Sevenless (SOS) in the natural membrane environment. The assay employs zero-mode waveguide (ZMW) nanostructures containing a single Ras-functionalized liposome. The ZMWs facilitate highly localized excitation of fluorophores in the vicinity of the liposome membrane, allowing direct observation of individual Ras activation events as single SOS enzymes catalyze exchange of unlabeled nucleotides bound to Ras with fluorescently labeled nucleotides from solution. The system is compatible with continuous recording of long sequences of individual enzymatic turnover events over hour-long time scales. The single turnover waiting time sequence is a molecular footprint that details the temporal characteristics of the system. Data reported here reveal long-lived activity states that correspond to well-defined conformers of SOS at the membrane. Liposome functionalized ZMWs allow for studies of nucleotide exchange reactions at single GTPase resolution, providing a platform to gauge the mechanisms of these processes.


Liposomes/chemistry , Son of Sevenless Proteins/chemistry , ras Proteins/chemistry , Enzyme Activation , Humans
18.
J Am Chem Soc ; 137(51): 16055-63, 2015 Dec 30.
Article En | MEDLINE | ID: mdl-26618221

Heme-copper oxidases (HCOs) are key enzymes in prokaryotes and eukaryotes for energy production during aerobic respiration. They catalyze the reduction of the terminal electron acceptor, oxygen, and utilize the Gibbs free energy to transport protons across a membrane to generate a proton (ΔpH) and electrochemical gradient termed proton motive force (PMF), which provides the driving force for the adenosine triphosphate (ATP) synthesis. Excessive PMF is known to limit the turnover of HCOs, but the molecular mechanism of this regulatory feedback remains relatively unexplored. Here we present a single-enzyme study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous to Complex IV in human mitochondria, can enter a rare, long-lifetime leak state during which proton flow is reversed. The probability of entering the leak state is increased at higher ΔpH. By rapidly dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable ΔpH under extreme redox conditions.

20.
Dev Cell ; 33(2): 163-75, 2015 Apr 20.
Article En | MEDLINE | ID: mdl-25898166

The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of "open" clathrin-coated pits (CCPs) to "necked"/"closed" CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake.


Cell Shape/genetics , Clathrin-Coated Vesicles/physiology , Coated Pits, Cell-Membrane/physiology , Fatty Acid-Binding Proteins/genetics , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/physiology , Cell Line, Tumor , Cell Membrane/physiology , Endocytosis , Epidermal Growth Factor/metabolism , HeLa Cells , Humans , Liposomes/metabolism , Protein Structure, Tertiary , R-SNARE Proteins/metabolism , RNA Interference , RNA, Small Interfering , Transferrin/metabolism
...